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Abstract

Although formal methods for developing com-

puter systems have been available for more than a

decade, few have had signi�cant impact in practice.

A major barrier to their use is that developers �nd

formal methods di�cult to understand and apply.

One exception is a formal method called SCR for

specifying computer system requirements which, due

to its easy-to-use tabular notation and demonstrated

scalability, has achieved some success in industry.

To demonstrate and evaluate the SCR method

and tools, we recently used SCR to specify the re-

quirements of a simpli�ed mode control panel for the

Boeing 737 autopilot. This paper presents the SCR

requirements speci�cation of the autopilot, outlines

the process we used to create the SCR speci�cation

from a prose description, and discusses the problems

and questions that arose in developing the speci�ca-

tion. Formalizing and analyzing the requirements

speci�cation in SCR uncovered a number of prob-

lems with the original prose description, such as

incorrect assumptions about the environment, in-

completeness, and inconsistency. The paper also

introduces a new tabular format we found useful in

understanding and analyzing the required behavior

of the autopilot. Finally, the paper compares the

SCR approach to requirements with that of Butler

[5], who uses the PVS language and prover [14] to

represent and analyze the autopilot requirements.

1 Introduction

Although formal methods for developing com-
puter systems have been available for more than
a decade, few of these methods have had signi�cant
impact in the development of practical systems. A
major impediment to the use of formal methods in
industrial software development is the widespread
view that the methods are impractical. Not only

�This work was supportedby the O�ce of Naval Research.

do developers regard most formal methods as dif-
�cult to understand and apply; in addition, they
have serious doubts about the scalability and cost-
e�ectiveness of the methods.

A promising approach to overcoming these prob-
lems is to hide the logic-based notation associated
with most formal methods and to adopt a notation,
such as a graphical or tabular notation, that devel-
opers �nd easy to use. Speci�cations in the more
\user-friendly" notation can be translated automat-
ically to a form more amenable to formal analysis.
In addition, the formalmethod should be supported
by powerful, easy-to-use tools. To the extent fea-
sible, the tools should detect software errors auto-
matically and provide easy-to-understand feedback
useful in tracing the cause of an error.

By providing a \user-friendly" tabular notation
with demonstrated scalability, a formal method
called SCR for specifying the requirements of com-
puter systems has already achieved some success in
practice. Since the publication more than 15 years
ago of the requirements speci�cation for the A-7 air-
craft's Operational Flight Program (OFP) [12, 1],
many industrial organizations, including Rockwell-
Collins, Lockheed, Grumman, and Ontario Hydro,
have used SCR to specify requirements. To support
the SCR method, we have recently developed a for-
mal state machine model to de�ne the SCR seman-
tics [9, 11] and a set of integrated software tools to
support validation and veri�cation of SCR require-
ments speci�cations [8, 10, 4]. The tools include
an editor for creating and modifying a requirements
speci�cation, a simulator for symbolically execut-
ing the speci�cation, a consistency checker which
checks the speci�cation for well-formedness (e.g.,
syntax and type correctness, no missing cases or
unwanted nondeterminism), and a veri�er based on
model checking for analyzing the speci�cation for
application properties.
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To demonstrate and evaluate the SCR method
and tools, we recently used SCR to specify the re-
quirements of a simpli�ed mode control panel for
the Boeing 737 autopilot based on a description
in a report by Butler [5]. Butler initially presents
an incomplete prose description of the autopilot,
and then adds prose to clarify the description. He
also represents the required behavior in the PVS
language [14] and veri�es certain properties of the
model using the PVS prover. This paper outlines
the process we used to create the SCR requirements
speci�cation of the mode control panel, presents the
SCR speci�cation, and discusses the problems and
questions that arose in developing the speci�cation.
Formulating the requirements speci�cation in SCR
exposed a number of problems with the prose de-
scription of the requirements, such as missing ini-
tial values, missing type de�nitions, missing units
of measurement, lack of speci�city, incorrect re-
quirement, and several instances of inconsistency.
The paper also introduces a new tabular format we
found useful in understanding and analyzing the be-
havior of the autopilot. Finally, the paper compares
the SCR approach to requirements with Butler's
PVS approach.

2 The SCR Method: Background

2.1 SCR and Other Approaches

A recent article by Shaw [16] presents and dis-
cusses a number of di�erent \speci�cations" of an
automobile cruise control system. Each is con-
structed to satisfy di�erent objectives. For example,
Atlee and Gannon use a language based on logic to
model the required behavior of a cruise control sys-
tem [3] and a model checker to detect violations of
selected properties. Below, we refer to their logic-
based description as an abstract model.

The abstract model in [3] di�ers from an SCR
speci�cation in an important respect|namely, in
the speci�c information it contains about the re-
quired behavior. Because its purpose is veri�ca-
tion, the abstract model omits many details. For
example, it does not describe the system outputs.
Omitting this information in an abstract model is
appropriate because the properties analyzed in [3]
are independent of the system outputs and because
a model useful in veri�cation should only include in-
formation needed to reason about selected proper-
ties. Eliminating irrelevant information is especially
important in veri�cation. Without dramatic reduc-
tions in the size of the state space to be analyzed,
model checking is usually infeasible. Moreover, the
elimination of irrelevant facts is also bene�cial in

mechanical theorem proving where the model to be
analyzed should only include those facts needed to
establish the properties of interest.

In contrast to the abstract model of the system
described in [3], the SCR requirements speci�cation
is a repository for all information that developers
will need to construct the system software. Hence,
it is necessarily more detailed and less abstract than
a model useful in veri�cation. An advantage of the
SCR approach to requirements is that it not only
provides detailed guidance on exactly what infor-
mation belongs in a requirements document, but in
addition provides a conceptual model of the system
to be developed as well as special language con-
structs for representing the system requirements.
This detailed guidance, system model, and language
constructs specialized for requirements speci�cation
are lacking in more generic languages such as State-
charts [7] and PVS which, unlike SCR, are not cus-
tomized for requirements speci�cation.

2.2 The SCR Model

In the SCR approach, the system requirements
are speci�ed as a set of relations that the system
must maintain between quantities of interest in its
environment. In SCR, a requirements speci�ca-
tion provides a \black box" description of the re-
quired behavior as two relations, REQ and NAT,
frommonitored variables, representing environmen-
tal quantities that the system monitors, to con-

trolled variables, representing environmental quan-
tities that the system controls [15]. NAT describes
the natural constraints on the system behavior, such
as constraints imposed by physical laws and the sys-
tem environment. REQ describes the relation the
system must maintain between the environmental
quantities represented by the monitored and con-
trolled variables. In SCR, these relations are speci-
�ed concisely using a tabular notation.

To provide a precise and detailed semantics for
the SCR method, the SCR model represents a sys-
tem as a �nite state automaton and describes the
monitored and controlled variables and other con-
structs that make up an SCR speci�cation in terms
of that automaton [11, 9]. To concisely describe the
required relation between the monitored and con-
trolled variables, the model uses four constructs|
modes, terms, conditions, and events. A mode class

is a partitioning of the system states. Each equiva-
lence class in the partition is called a system mode

(or simply mode). A term is any function of mon-
itored variables, modes, or other terms. A condi-

tion is a predicate de�ned on a system state. An
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event occurs when the value of any system variable
changes (a system variable is a monitored or con-
trolled variable, a mode class, or a term). The nota-
tion \@T(c) WHEN d" denotes a conditioned event,
de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evalu-
ated in the \old" state, and the primed condition
c0 is evaluated in the \new" state. Informally, this
denotes the event \predicate c becomes true in the
new state when predicate d holds in the old state".
The notation \@F(c)" denotes the event @T(NOT

c). During the operation of the system, the envi-
ronment changes a monitored variable, causing an
input event. In response, the system updates terms
and mode classes and changes controlled variables.

3 Developing the SCR Requirements

Figure 1 illustrates the simpli�ed mode control
panel for the Boeing 737 as described in [5]. The au-
topilot monitors the aircraft's altitude (ALT), 
ight
path angle (FPA) and calibrated air speed (CAS)
and controls three displays which, depending on the
mode, show either the current or desired value of
the aircraft's altitude, its 
ight path angle, and its
airspeed. The pilot enters (i.e., preselects) a new
value into a display by using one of three knobs
next to the displays and engages or disengages the
autopilot by pressing one of four buttons at the top
of the panel. Appendix A contains a prose descrip-
tion of the system adapted from [5]. The reader
should note that the prose presented by Butler in
[5] was intended as an example and is therefore (in-
tentionally) incomplete. In the prose presented in
this paper, we have (to the best of our knowledge)
eliminated all intended incompleteness. Also, the
variable names have been changed slightly to con-
form to the naming conventions of SCR speci�ca-
tions.

3.1 Environmental Variables

In the autopilot speci�cation, we use the pre-
�x \m" to indicate the names of monitored vari-
ables. The type of a monitored variable indicates the
range of values that may be assigned to the variable.
The autopilot system monitors the current altitude
(represented by monitored variable mALTcurrent),
the current 
ight path angle (mFPAcurrent), and
the current calibrated air speed (mCAScurrent).
Each of these monitored variables is of type inte-
ger. We assume that the autopilot measures the

ATTsw CASsw

FPAsw ALTsw

ALTdisplay

FPAdisplay

CASdisplay

ALTknob

FPAknob

CASknob

Figure 1: Mode Control Panel

altitude mALTcurrent in feet, the 
ight path an-
gle mFPAcurrent in degrees, and the calibrated
air speed mCAScurrent in feet per second. The
monitored variables mALTsw, mATTsw, mCASsw, and
mFPAsw represent the positions of the four buttons,
and each is either on or off. Finally, the mon-
itored variables mALTdesired, mCASdesired, and
mFPAdesired represent the values indicated by the
three knobs and range over the integers.

The controlled variables are assigned names with

the pre�x \c". Just as for monitored variables,
each controlled variable has an assigned type. As
in [5], we only model the mode control panel, omit-
ting commands sent to the 
ight control computer.
We represent the three controlled quantities of the
mode control panel as cALTdisplay, cFPAdisplay,
and cCASdisplay and assume each is of type inte-
ger. We further assume that cALTdisplay displays
the altitude in feet, cFPAdisplay displays the

ight path angle in degrees and cCASdisplay dis-
plays the calibrated air speed in feet per second.

3.2 System Modes

The SCR speci�cation includes a single mode
class mcStatus containing modes in the set
fALTmode; ATTmode; FPAarmed; FPAunarmedg. When
the system is in FPA mode and the altitude engage
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mode is \armed", we say the system is in mode
FPAarmed. When the system is in the \normal"

ight path angle selected mode, we say the sys-
tem is in mode FPAunarmed. Thus, the system is
in FPAmode when mcStatus is either FPAarmed or
FPAunarmed. Because the system can be in the cal-
ibrated air speed mode independently of whether it
is in ALTmode, ATTmode, or FPAmode, we exclude the
calibrated air speed mode from mcStatus and use a
term to describe whether the system is in this mode
(see below).

3.3 Terms

Terms are assigned names with the pre�x \t".
The autopilot speci�cation contains �ve terms,
each of type boolean. The terms tALTpresel,
tCASpresel, and tFPApresel indicate whether the
pilot has preselected the altitude, the calibrated air
speed, or the 
ight path angle using one of the
three knobs. The term tNear denotes when the
di�erence between the desired altitude and the cur-
rent altitude is less than or equal to 1200 feet, i.e.,
mALTdesired� mALTcurrent � 1200. Finally, the
term tCASmode indicates whether the system is in
the calibrated air speed mode.

3.4 Relation REQ

The relation REQ is speci�ed by a set of tables,
one for each controlled variable, term, and mode
class.

Mode Transition Table. The mode transition

table in Figure 2 speci�es the behavior of the
mode class mcStatus. In the table, the expres-
sion CHANGED(x) denotes the event \variable x has
changed value". The table de�nes all events that
change the value of the mode class mcStatus. For
example, the fourth row of the table states: \If
mcStatus is ALTmode, and mATTsw is switched on, or
the setting of knob mALTdesired is changed, then
mcStatus changes to ATTmode." An assumption is
that events omitted from the table do not change
the value of the mode class. For example, when
the system is in ALTmode, pressing the button la-
beled \ALTsw" (that is, the occurrence of the input
event @T(mALTsw=on)) does not change the value of
mcStatus.

Each row in the mode transition table in Figure 2
corresponds to certain parts of the prose description
in Appendix A. We describe this correspondence
below by associating each row of the table with the
number of a paragraph in the prose description in
Appendix A. In some cases, two rows of the table
are derived from the same paragraph; for example,

rows R3 and R5 are both derived from paragraph 1.

R1 The pilot engages a mode by pressing the cor-

responding button on the panel (paragraph 1),
i.e., pressing ALTsw engages ALTmode. How-

ever, the altitude must be preselected before

ALTsw is pressed (paragraph 4). If the pi-

lot dials an altitude that is more than 1200
feet above ALTcurrent and then presses ALTsw,

then ALTmode will not directly engage (para-
graph 3).

R2 If the pilot dials into ALTdesired an altitude

that is more than 1200 feet above ALTcurrent

and then presses ALTsw, then ALTmode will not

directly engage. Instead, the altitude engage

mode will change to \armed" and FPAmode is

engaged (paragraph 3).

R3 The pilot engages a mode by pressing the cor-

responding button on the panel (paragraph
1), i.e., by pressing FPAsw the pilot engages
FPAunarmed.

R4 The pilot engages a mode by pressing the cor-

responding button on the panel (paragraph 1),
i.e., pressing ATTsw should engage ATTmode,
OR if the pilot dials in a new altitude while

ALTmode is engaged, then ALTmode is disen-

gaged and ATTmode is engaged (paragraph 7).

R5 Same as row R3.

R6 Combination of scenarios for rows (4) and (3)
above.

R7 FPAmode will remain engaged until the air-

craft is within 1200 feet of ALTcurrent, then

ALTmode is automatically engaged (paragraph
3).

R8 The pilot engages a mode by pressing the cor-

responding button on the panel (paragraph 1),
i.e., by pressing mATTsw the system enters
ATTmode, OR FPAsw toggles on and o� every

time it is pressed (paragraph 5).

R9 Same as row R1.

R10 Same as row R2.

Term and Controlled Variable Tables. Each
of the three terms, tALTpresel, tCASpresel, and
tFPApresel, is true when the corresponding dis-
play, cALTdisplay, cCASdisplay, or cFPAdisplay,
shows the \preselected" value and is false when the
corresponding display shows the \current" value.
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Figure 2: Mode Transition Table for mcStatus

Figure 3: Condition Table for cCASdisplay

Figure 3 is a condition table which speci�es the
behavior of the display cCASdisplay. This table
states: \If tCASpresel is true, then cCASdisplay

has the value mCASdesired; otherwise, it has the
value mCAScurrent". The behavior of displays
cALTdisplay and cFPAdisplay are speci�ed sim-
ilarly (see Appendix B).

The event table in Figure 4 speci�es the behav-
ior of tALTpresel. Like mode transition tables,
event tables make explicit only those events that
cause the variable de�ned by the table to change.
For example, the �rst entry in the �rst row states:
\If mcStatus is ATTmode and mALTdesired changes
value, then tALTpresel becomes true." The entry
\NEVER" in an event table means that no event can
cause the variable de�ned by the table to assume

Figure 4: Event Table for tALTpresel

the value in the same column as the entry; thus, the
entry \NEVER" in row 2 of the table means, \When
mcStatus is ALTmode or FPAarmed, then no event
can cause tALTpresel to become true." Figure 5
shows the event table for tFPApresel.

4 Questions and Issues

Developing the SCR speci�cation raised a num-
ber of questions about the required behavior of the
mode control panel described by the prose in [5].
In a few cases (noted below), the problems were
corrected in Butler's PVS formulation. These ques-
tions arose because applying the SCR method ex-
poses instances of incompleteness and inconsistency
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Figure 5: Event Table for tFPApresel

in the speci�cation. This section presents these
problems and describes how we resolved them. In
resolving each problem, we made an educated guess
about the actual requirement. Appendix B contains
our revised SCR speci�cation. For this speci�ca-
tion to be acceptable, however, our decisions would
need to be reviewed by system engineers with ex-
pert knowledge of the Boeing 737 autopilot.

4.1 Incompleteness

Developing the SCR speci�cation exposed nu-
merous instances of incompleteness in the prose de-
scription. First, the prose provides no informa-
tion about the types, ranges, and units of mea-
surement of the monitored variables that repre-
sent the current and desired altitude, (mALTcurrent
and mALTdesired), the current and desired 
ight
path angle (mFPAcurrent and mFPAdesired), and
the current and desired calibrated air speed
(mCAScurrent and mCASdesired). In addition, the
ranges and units of measurement of the three con-
trolled variables cALTdisplay, cFPAdisplay, and
cCASdisplay are also omitted. This information is
also missing in Butler's PVS model due to its ab-
stract level. As noted above, the SCR speci�cation
represents these quantities as integers. In the �nal
speci�cation, even more precise information about
the types would be required. For example, what are
the minimum and maximum values of each moni-
tored quantity? Are negative integers acceptable?

In addition, the prose description does not indi-
cate the initial state of the autopilot. Butler's PVS
description, however, does provide this information.
Our SCR speci�cation states that in the initial state

mcStatus is ATTmode, tCASmode = false, the de-
sired and current altitude are 0, etc. Appendix B
shows the initial values and types of the monitored
and controlled variables, terms, and mode class in
the SCR speci�cation. (In a speci�cation produced
by our toolset, the variable and mode class dictio-
naries, omitted here due to space limitations, would
contain this information.)

4.2 Lack of Speci�city

Paragraph 5 of the prose description states:
\FPAsw toggles on and o� every time it is pressed."
Paragraph 1 states: \One of the three modes

ATTmode, FPAmode, or ALTmode should be engaged at

all times." From these two sentences one can infer
that if FPAmode is toggled o� by FPAsw, then one of
ATTmode or ALTmode is engaged; but not which one.
In our speci�cation as well as Butler's, the decision
is to engage ATTmode.

4.3 Wrong Interpretation

Paragraph 3 of the prose description states: \If
the pilot dials an altitude that is more than 1200
feet above ALTcurrent and then presses ALTsw,

then ALTmode will not directly engage. Instead,

the altitude engage mode will change to armed and

FPAmode is engaged." This sentence is either incor-
rect, or is misinterpreted by Butler|the PVSmodel
in [5] sets the altitude engage mode to armed also in
the case where the pilot dials a value for desired alti-
tude that is more than 1200 feet below ALTcurrent

and then presses ALTsw.

4.4 Incorrect Requirement

Paragraph 6 of the prose description states:
\Whenever a mode other than CASmode is en-

gaged, all other preselected displays should return

to current." However, consider the scenario where
CASmode is engaged, CASdisplay shows the pre-
selected value, and the pilot engages ATTmode.
Clearly, returning CASdisplay to show the cur-
rent value would be wrong in this situation since
CASmode remains engaged. Therefore, the above
sentence should read instead, \Whenever a mode

other than CASmode is engaged, ALTdisplay and

FPAdisplay, if preselected, should return to cur-

rent." The PVS model does the right thing for this
scenario; however, Butler does not point out the
error in the prose.

4.5 Inconsistent Requirement

Paragraph 6 of the prose description states:
\Whenever a mode other than CASmode is engaged,
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ALTdisplay [: : :], if preselected, should return to

current." For the scenario of paragraph 7 \If the
pilot dials in a new altitude while ALTmode is en-

gaged or the altitude engage mode is \armed", then

ALTmode is disengaged and ATTmode is engaged."
This suggests that tALTpresel is set to false (be-
cause ATTmode is engaged). On the other hand, the
sentence \However, the pilot can enter a new value

into a display by dialing in the value using the knob

next to the display" of paragraph 2 suggests that
tALTpresel is set to true for this scenario (because
the pilot has dialed-in a new altitude). We resolved
this inconsistency by setting tALTpresel to false.
Butler does not point out this inconsistency in the
prose. Unlike the SCR speci�cation, his PVS model
resolves the inconsistency by preselecting the dis-
play.

5 Consistency Checking, Simulation

After creating the requirements speci�cation, we
used our automated consistency checker [8, 9] to
check for proper syntax, type correctness, miss-
ing cases, nondeterminism, and other application-
independent properties. Then, we used our simula-
tor to symbolically execute the requirements speci�-
cation [10] to ensure that the speci�cation captures
(what we assume is) the \customers' intent". For
the autopilot speci�cation, our consistency checker
detected three instances of inconsistent require-
ments. Whereas we detected the inconsistency de-
scribed in Section 4.5 by inspection, we overlooked
the following three cases of inconsistency. Butler's
PVS model, being too abstract, failed to detect any
of these problems.

1. Consider the two sentences in paragraph 2 of
the prose description: (1) However, the pi-

lot can enter a new value into [FPAdisplay]

by dialing in the value using the knob

[FPAdesired] and (2) Once the target value

is achieved [: : :], the display reverts to showing

the \current" value. These sentences are incon-
sistent in the situation where the pilot enters
a new value into FPAdisplay that is the same
as FPAcurrent. In this situation, should the
display show the dialed-in value or the current
value?

Butler1 answers this question as follows: The

phrase : : :\will this a�ect the preselected value

(i.e., change it to current)" is di�cult to inter-

pret. I assume you meant \will this a�ect the

status of the corresponding display (i.e., change

1Private communication.

it to current)". Interestingly in this case the

status distinction is an artifact of the formal-

ism because the target and current are the same

value. So the \status" is merely a matter of

choice/taste.

While we agree with Butler that the status dis-
tinction does not a�ect the current value of
the display, we note that it does a�ect the
future values displayed. For instance, sup-
pose FPAcurrent proceeds to diverge from
FPAdesired immediately following the above
scenario. The sentence marked (1) speci�es
FPAdisplay to continue to show FPAdesired,
whereas the sentence marked (2) speci�es that
FPAdisplay should track the \current" value.
We resolved this issue by assuming that sen-
tence (2) takes precedence over sentence (1).
The table de�ning tFPApresel in Appendix B
re
ects this decision.

2. A similar scenario may be constructed for the
calibrated air speed display. We resolved the is-
sue in the same way as above. The table de�n-
ing tCASpresel in Appendix B re
ects this de-
cision.

3. The �rst sentence of paragraph 7 states: If the
pilot dials in a new altitude while [: : :] the alti-

tude engage mode is \armed", then ALTmode is

disengaged and ATTmode is engaged. However,
dialing in a new altitude in mode FPAarmed can
cause tNear to simultaneously become true,
which leads to inconsistency. We ignore the
event @T(tNear) in this situation. The revised
speci�cation for mcStatus in Appendix B re-

ects this decision.

6 Application Properties

After applying the consistency checker and the
simulator, we wanted to check the requirements
speci�cation for critical application properties, such
as safety properties. Veri�cation may be carried out
using an interactive theorem prover such as PVS
[14, 5], or by using \lightweight" analysis tools such
as model checkers. The SCR toolset supports proof
of safety properties of requirements speci�cations
using model checking based on state exploration [4].
The following sentences in paragraph 1 of the prose
description are examples of properties of the autopi-
lot mode control panel:

1. Only one of the three modes ALTmode,
ATTmode, or FPAmode can be engaged at any
time.
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2. One of the three modes, ALTmode, ATTmode, or
FPAmode should be engaged at all times.

3. Engaging any of the three modes will automati-
cally cause the other two to be disengaged since
only one of these three modes can be engaged
at a time.

4. The mode CASmode can be engaged at the same
time as any of the other modes.

The type de�nition of mode class mcStatus

is fALTmode; ATTmode; FPAarmed; FPAunarmedg, and
by de�nition, the system is in FPAmode if mcStatus
is FPAarmed or FPAunarmed. We denote the system
being in CASmode by the boolean term tCASmode

whose value is independent of mcStatus. By this
choice of the domain for mode class mcStatus, and
the de�nition of tCASmode, the above properties are
trivially satis�ed (and veri�ed automatically by a
type checker).

5. Whenever the altitude engage mode is
\armed", FPAmode is engaged.

For the SCR autopilot speci�cation, this follows
directly from the de�nition of FPAmode, i.e., the
system is in FPAmode if mcStatus is FPAarmed or
FPAunarmed. Therefore, if mcStatus is FPAarmed,
the system is in FPAmode.

We used the Spin model checker to verify the
requirements speci�cation for two additional prop-
erties stated in [5] which are listed below. These
properties could not be checked using simple type
checking.

P1 When FPAmode is disengaged, the FPA display
reverts to showing the \current" value.

P2 When ALTmode is disengaged, the ALT display
reverts to showing the \current" value.

We currently check two classes of properties:
state invariants, which assert the truth of a pred-
icate formula for all reachable states of a system,
and transition invariants, which assert the truth of
a predicate formula (on two states) for all pairs of
consecutive states of a system. Both P1 and P2 are
transition invariants. Model checking can be inef-
fective in practice due to state explosion. By their
very nature, the number of reachable states of prac-
tical systems is usually very large in relation to their
logical representation. Several techniques have been
proposed in the literature for limiting state explo-
sion. The technique we use is abstraction|instead
of model checking the whole SCR speci�cation, we

model check a smaller, more abstract model. To
obtain the abstraction, we exploit the structure of
the formula and the structure inherent in all SCR
speci�cations. We use the two correctness preserv-
ing reductions of [4] to derive the abstract speci�ca-
tion. Finally, we translate the abstract speci�cation
to PROMELA, the language of Spin [13], and run
Spin on the PROMELA model.

When we initially attempted to check property
P1, Spin detected a violation. The counterexample
generated by Spin had 4867 states (which trans-
lates to 811 SCR \steps"). The shortest counterex-
ample had only 73 states (12 SCR \steps"). By
running the counterexample through the simulator
of our toolset, we were able to pinpoint the cause
of the property violation|a typographical error in
the mode transition table for mcStatus.

7 A New Tabular Format

In [5], Butler presents two di�erent PVS mod-
els of the panel requirements. In his initial model,
he identi�es the di�erent input events (e.g., chang-
ing the ALT button to on, setting the knob labeled
ALT to a new value, etc.) and then speci�es the
required behavior by describing the state changes
and the changes in the displays that each input
event causes. Thus, his initial model is organized
by the input events. His second model de�nes a
set of modes and describes the required behavior in
terms of those modes. Butler claims that the lat-
ter organization, which is the organization used in
SCR speci�cations, results in \a more complex for-
mulation for this example problem." Moreover, he
notes that his initial model is smaller, containing
373 words in contrast to 761 words.

We agree that understanding the overall system

behavior can be di�cult when that behavior is spec-
i�ed in numerous tables. This problem is overcome
to some extent by the dependency graph produced
by our toolset (see Appendix B), which shows all
the variables in the speci�cation and their depen-
dencies. In initially creating the SCR speci�ca-
tion, we developed individual tables for the mode
class, the terms, and the three control variables. To
enhance our understanding, we introduced a new
tabular format that combines several smaller tables
into a larger table. This larger table, which speci-
�es the values of several variables each de�ned by
either a mode transition table or an event table, is
similar to the \selector table" used in the original
A-7 requirements speci�cation2.

2A similar tabular format was also used in Lockheed's

SCR speci�cation of the OFP for the C-130J aircraft.
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The speci�cation in Appendix B contains two ex-
amples of the new tabular format. The �rst exam-
ple de�nes the values of the terms tCASmode and
tCASpresel. The other de�nes the values of the
mode class mcStatus and the terms tALTpresel

and tFPApresel. The new tabular format is useful
because it collects in a single place all events that
change a set of related variables. For example, the
table de�ning mode class mcStatus and the terms
tALTpresel and tFPApresel shows that when the
system is in mode FPAarmed, pressing either mATTsw
or mFPAsw causes the system to enter ATTmode and
sets both tALTpresel and tFPApresel to false. Al-
though the new table format is useful, the three sep-
arate tables de�ning mcStatus, tALTpresel, and
tFPApresel are also useful, but for answering a dif-
ferent set of questions: for example, the table de�n-
ing the mode class mcStatus identi�es all events
that can change the current mode but does so with-
out the clutter of the extra information in the new
table. Further, in a large application, merging ta-
bles together into a single table could produce very
large tables that would be di�cult to understand.
As a result, we plan to support both our original
tables, which de�ne individual variables, and the
new table, which de�nes two or more variables|
and to automatically generate the larger table from
selected tables that de�ne individual variables.

In our view, the SCR speci�cation in Appendix B
is both easy to understand and concise. The
complete speci�cation is contained in two pages.
Moreover, the SCR speci�cation has an advantage
over Butler's PVS model: it is easier to change.
For example, our initial version of the speci�ca-
tion de�ned a term called tArmed and only three
modes, FPAmode, ALTmode, and ATTmode, in the
mode class mcStatus. Our revised version removed
the term tArmed and replaced mode FPAmode with
two modes FPAarmed and FPAunarmed, thus pro-
ducing a speci�cation that was more concise and
easier to understand. Making the change was quite
straightforward|we simply eliminated the table for
tArmed, revised the table for mcStatus, and modi-
�ed the tables for tALTpresel and tFPApresel to
describe the required behavior in modes FPAarmed
and FPAunarmed. The tables de�ning the displays
as well as all rows of tables that did not involve
FPAmode were unchanged.

8 SCR versus PVS

Although PVS was not speci�cally designed to
specify requirements, Butler advocates the use of
the PVS language and prover for requirements spec-

i�cation [5]. In his report [5], Butler presents two
PVS models of the mode control panel and ver-
i�es properties of the model organized by inputs
using the PVS prover. As noted in the introduc-
tion, di�erent formal models serve di�erent pur-
poses. While the PVS model of the panel allowed
Butler to verify certain properties of interest, in our
view, PVS is not a good notation for expressing
requirements speci�cations to be used by software
developers. This is because PVS, a language based
on higher-order logic, produces speci�cations that
are less readable by practitioners than speci�cations
in alternative, more user-friendly languages. More-
over, because PVS is not part of a requirements
method but is a general-purpose language designed
to specify mathematical models, most PVS models
omit (abstract away) information needed in a re-
quirements speci�cation|that is, PVS models are
usually incomplete. Many of the questions that
arose in our development of the SCR speci�cation
emerged because an SCR speci�cation requires in-
formation that is lacking in Butler's PVS model.

Below, we compare the SCR approach to require-
ments speci�cation and veri�cation with the ap-
proach used by Butler. Although some of the prob-
lems we discuss are intrinsic to PVS, others are the
result of decisions Butler made in developing the
PVS model.

8.1 What are the requirements?

In the SCR approach, a requirements speci�ca-
tion is complete when the speci�cation contains all
the information software developers will need to de-
sign and implement the software. To accomplish
this, the speci�cation must identify the quantities of
interest in the system's environment, in particular,
the monitored and controlled quantities, and specify
the required relation between them. Butler's PVS
model does not clearly identify the environmental
quantities of interest. Nor does the PVS model
clearly delineate monitored and controlled quanti-
ties. The result is that one cannot infer from the
PVS model the required relationships among these
quantities.

The PVS model makes use of actions or events
as unde�ned (primitive) elements. In SCR, in con-
trast, the system inputs and outputs are modeled
as variables, thus capturing more semantic infor-
mation about the system behavior. This seman-
tic information can be exploited in analyzing the
speci�cation for errors. For example, the PVS
model assumes that certain input events are mu-
tually disjoint, which results in the omission of an
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input event from the model (see Section 8.2). Since
the SCR speci�cation explicitly de�nes the environ-
mental quantities of interest, this incompleteness in
the speci�cation was automatically detected during
consistency checking.

The requirements speci�cation presented in Ap-
pendix B is closer than the PVS model to a \real"
requirements speci�cation useful to developers. We
note, however, that it is still incomplete in at least
three respects. First, the I/O devices (or subsys-
tems) that the autopilot uses to measure and com-
pute the monitored and controlled quantities must
be speci�ed. Second, the required timing and ac-
curacy of the system is yet unspeci�ed. Third, the
constraints imposed by NAT need to be speci�ed.
Once these aspects of the required software behav-
ior are provided, developers would have all the in-
formation necessary to design, implement, and test
the system.

8.2 What are the constraints?

To be complete, a requirements speci�cation (in-
cluding ours) should model the constraints that
physical laws and the system's environment im-
pose on the environmental quantities. For exam-
ple, changes in altitude are limited by physical laws
(e.g., the laws of gravity) and by the maximum rate
at which the Boeing 737 can gain or lose altitude.
Inclusion of such constraints in the speci�cation can
be used later in software development to do sanity
checks on the speci�cation|and the code|and to
indicate when some fault has occurred (e.g., a sen-
sor measuring altitude has failed).

Relations NAT and REQ are speci�ed separately
in the SCR method (see Section 2.2). The PVS
model, on the other hand, does not distinguish re-
lationships that arise from existing physical or other
constraints (relation NAT of SCR) and relation-
ships that are to be enforced by the system (relation
REQ of SCR). This gap leads to two related prob-
lems: overspeci�cation and incompleteness.

Overspeci�cation. It is useful (and simpler) to ig-
nore impossible situations (i.e., situations ruled out
by NAT) in the de�nition of relation REQ. For ex-
ample, the PVS model de�nes the following events:

alt reached the altitude reaches the pres-
elected value

alt gets near the altitude is now near, but
not equal to the preselected
value

On page 12 of [5], Butler addresses the scenario
where the system is in mode FPAarmed (i.e., predi-
cate tNear is false) and the event alt reached oc-

curs without alt gets near occurring �rst. This
situation is clearly ruled out by relation NAT (if
tNear is false, the current altitude cannot reach
the preselected value without tNear becoming true
�rst). Therefore, when specifying relation REQ,
one need not deal with the above scenario.

Incompleteness. The PVS model considers the
following events to be mutually disjoint:

input alt the action of dialing a value
using mALTdesired

alt reached the altitude reaches the pres-
elected value

alt gets near the altitude is now near, but
not equal to the preselected
value

But, these events are not disjoint. For exam-
ple, the action of dialing a value (denoted by event
input alt) can simultaneously cause either of the
other two events to occur. The PVS model fails to
consider these cases.

8.3 What is the level of abstraction?

The PVS description of the autopilot may be
viewed as an abstract model of the mode con-
trol panel. For example, the monitored quan-
tity ALTcurrent is denoted abstractly by two
boolean variables alt reached and alt gets near;
boolean variable input alt abstractly denotes the
pilot dialing in the desired altitude using knob
ALTdesired; etc. Once the model is constructed,
one can use deductive reasoning to check that the
model satis�es speci�ed properties of interest, such
as the application properties described above. Al-
though such an approach is a good way to detect
errors in the system requirements, our claim is that
such abstract models must be transformed into a
more concrete requirements speci�cation, such as
the one we present in Appendix B. Without a re-
quirements speci�cation, one cannot determine the
monitored and controlled quantities of interest, and
the required relationship between them. If the cor-
respondence between the abstract model and the
requirements speci�cation is informal (and the re-
quired relation REQ is never speci�ed explicitly),
developers may misinterpret the requirements.

8.4 Role of tool support

The major strength of PVS is veri�cation: using
PVS, a user can analyze a speci�cation for complex
properties. In another task, we have used PVS to
detect serious errors in the speci�cation of a hybrid,
real-time system [2]. However, because PVS was
not designed for specifying and analyzing require-
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Problem Description Location Phase Reference

Formulating
SCR Spec

Consistency
Checking

Model Checking

Missing initial values prose many 4.1

Missing ranges, types, and prose, PVS many 4.1

units of measurement

Lack of speci�city prose 1 4.2

Incorrect requirement prose 1 4.4

Inconsistent requirements prose, PVS 1 3 4.5, 5

Transcription error SCR 1 6

Wrong interpretation PVS 1 4.3

Overspeci�cation PVS 1 8.2

Incompleteness PVS 1 8.2

Table 1: Detected Problems

ments, it lacks a requirements method. Without
such a method, users have little guidance in devel-
oping a requirements speci�cation. In contrast, the
SCR method has been speci�cally designed to pro-
duce precise and complete requirements speci�ca-
tions. In our experience, tools that support a spe-
ci�c conceptual model and method are more e�ec-
tive than general-purpose tools. If a formal model
lacks a strong underlying method, the bene�ts of
automation are likely to be minimal ([6] provides
more details). Since the SCR method focuses on a
limited class of systems and standardizes the con-
ceptual model, the notation, and the process, sig-
ni�cant automated tool support is possible.

9 Analysis

Table 1 summarizes the problems we detected in
applying the SCR method to the autopilot speci�-
cation and identi�es the speci�cations in which each
problem occurs. Some of the problems listed (miss-
ing initial values, lack of speci�city, and incorrect
prose) were corrected by Butler. All the other prob-
lems, except the typographical error, were addi-
tional problems detected when we applied the SCR
method to Butler's (presumably correct) prose spec-
i�cation. All but four of them were detected in for-
mulating the SCR speci�cation. Of the remaining
four problems, the typographical error was detected
by model checking and the remaining three cases
of inconsistency were detected by our consistency
checker.

It is clear from Table 1 that merely specifying
a system using the SCR method without any auto-

mated analysis can expose many problems. It may
be argued that some of these problems might even-
tually be detected by the PVS prover. To do this,
however, users must formulate properties that will

expose the problems. It has been our experience
that formulating correct properties for a large re-
quirements speci�cation can be non-trivial. More-
over, in our opinion, the e�ort needed to analyze
the speci�cation with PVS would be signi�cantly
greater than the e�ort involved in formulating the
speci�cation in SCR and analyzing it with the SCR
tools.

Our experience can be compared to that of
Miller3, who reports that the SCR method helped
uncover 18 errors in a speci�cation of an autopi-
lot at Rockwell-Collins. Of the errors, one-third of
them were detected during formulation of the SCR
speci�cation, one-third by the consistency checker,
and one-third during simulation. (Since we used
the simulator to a much smaller degree than Miller,
we found no signi�cant errors using the simula-
tor.) Our two e�orts clearly demonstrate that light-
weight methods are highly e�ective in uncovering
errors in requirements speci�cations. It is also im-
portant to note that most of these errors, including
those that were detected by formulating the spec-
i�cation in SCR, would have probably gone unde-
tected without appropriate tool support.

10 Conclusions

In this paper, we outlined a process for creat-
ing an SCR requirements speci�cation of a simpli-
�ed mode control panel for the Boeing 737 autopi-
lot, based on the prose description of the system
presented in [5]. Developing an SCR speci�cation
of the autopilot uncovered a number of problems
that were undetected in Butler's formalization of
the problem using PVS. While PVS is useful for ver-
ifying deep properties of speci�cations, this study

3Private communication.
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provides evidence that PVS is not well suited for
formulating and analyzing requirements speci�ca-
tions, especially during the initial stages. This is
due to a number of factors: the logic-based PVS
language which software developers �nd di�cult to
apply, the mathematical sophistication and theo-
rem proving skills that developers need to verify
properties using the PVS prover, and the lack of a
requirements method for PVS.

We envision a process for developing high-quality
requirements speci�cations that combines the SCR
technology and a mechanical prover, such as PVS.
This process would rely on the light-weight SCR
tools during the initial part of the requirements
process|speci�cation using a formal yet \user-
friendly" notation to capture the requirements, au-
tomated consistency checking and model checking
to detect violations of simple properties, and simu-
lation to ensure that the speci�cation captures the
customers' intent. Once su�cient con�dence in the
speci�cation is developed, a mechanical proof sys-
tem, such as PVS, may be used to verify deep prop-
erties of the complete requirements speci�cation
or, more likely, safety-critical components. While
software developers themselves will have the skills
needed to apply the light-weight SCR tools, apply-
ing heavy-duty theorem proving is likely to require
formal methods experts with the requisite mathe-
matical sophistication and theorem proving skills.
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A Description of the autopilot

1. The mode-control panel contains four buttons for selecting modes and three displays for dialing in or

displaying values, as shown in Figure 1. The system supports the following four modes: attitude control

wheel steering (ATTmode), 
ight path angle selected (FPAmode), altitude engage (ALTmode), and calibrated

air speed (CASmode).

Only one of the �rst three modes can be engaged at any time. The mode CASmode can be engaged at the

same time as any of the other modes. The pilot engages a mode by pressing the corresponding button

on the panel. One of the three modes, ATTmode, FPAmode, or ALTmode should be engaged at all times.

Engaging any of the �rst three modes will automatically cause the other two to be disengaged since only

one of these three modes can be engaged at a time.

2. There are three displays on the panel: altitude (ALTdisplay), 
ight path angle (FPAdisplay), and cali-

brated air speed (CASdisplay). The displays usually show the current values of altitude (ALTcurrent),


ight path angle (FPAcurrent), and air speed (CAScurrent) of the aircraft. However, the pilot can

enter a new value into a display by dialing in the value using the knob next to the display (ALTdesired,

FPAdesired, or CASdesired). This is the target or \pre-selected" value that the pilot wishes the air-

craft to attain. For example, if the pilot wishes to climb to 25; 000 feet, he will dial 25; 000 (using the

knob ALTdesired) into ALTdisplay and then press ALTsw to engage ALTmode. Once the target value is

achieved or the mode is disengaged, the display reverts to showing the \current" value.

3. If the pilot dials into ALTdesired an altitude that is more than 1; 200 feet above the current altitude

(ALTcurrent) and then presses ALTsw, then ALTmode will not directly engage. Instead, the altitude

engage mode will change to \armed" and FPAmode is engaged. The pilot must then dial in, using the

knob FPAdesired, the desired 
ight-path angle into FPAdisplay, which will be followed by the 
ight-

control system until the aircraft attains the desired altitude. FPAmode will remain engaged until the

aircraft is within 1; 200 feet of ALTcurrent, then ALTmode is automatically engaged.

4. CASdesired and FPAdesired need not be pre-selected before the corresponding modes are engaged|the

current values displayed will be used. The pilot can dial-in a di�erent target value after the mode is

engaged. However, the altitude must be pre-selected before ALTsw is pressed. Otherwise, the command

is ignored.

5. CASsw and FPAsw toggle on and o� every time they are pressed. For example, if CASsw is pressed while

the system is already in CASmode, that mode will be disengaged. However, if ATTsw is pressed while

ATTmode is already engaged, the command is ignored. Likewise, pressing ALTsw while the system is

already in ALTmode has no e�ect.

6. Whenever a mode other than CASmode is engaged, all other pre-selected displays should return to current.

7. If the pilot dials in a new altitude while ALTmode is engaged or the altitude engage mode is \armed", then

ALTmode is disengaged and ATTmode is engaged. If the altitude engage mode is \armed" then FPAmode

should be disengaged as well.
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B SCR Speci�cation of the autopilot

Monitored Variables:

mALTcurrent, mCAScurrent, mFPAcurrent : Integer initially all 0;
mALTsw, mATTsw, mCASsw, mFPAsw : fon; offg initially all off;
mALTdesired, mCASdesired, mFPAdesired : Integer initially all 0;

Controlled Variables:

cALTdisplay, cCASdisplay, cFPAdisplay : Integer initially all 0;

Terms:

tALTpresel, tCASpresel, tFPApresel : Boolean initially all false;
tCASmode : Boolean initially false;

tNear
def
= mALTdesired� mALTcurrent� 1200;

Mode Class:

mcStatus : fALTmode; ATTmode; FPAarmed; FPAunarmedg initially ATTmode;

Figure 6: Variable Dependency Graph
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Term = tCASmode

Events tCASmode tCASpresel

NOT tCASmode @T(mCASsw=on) true

CHANGED(mCASdesired) true

tCASmode @T(mCASsw=on) false false

@T(mCASdesired=mCAScurrent) false

CHANGED(mCASdesired) AND mCASdesired' 6= mCAScurrent' true

Mode Class = mcStatus

Old Mode Events New Mode tALTpresel tFPApresel

ATTmode @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) true

ALTmode @T(mATTsw=on) ATTmode false false

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) true

@T(mALTdesired = mALTcurrent) false

FPAarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) AND mFPAdesired' 6= mFPAcurrent' true

@T(tNear) AND mALTdesired = mALTdesired' ALTmode false

@T(mFPAdesired = mFPAcurrent) false

FPAunarmed @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) AND mFPAdesired' 6= mFPAcurrent' true

@T(mFPAdesired = mFPAcurrent) false

Conditions

tALTpresel NOT tALTpresel

cALTdisplay = mALTdesired mALTcurrent

Conditions

tCASpresel NOT tCASpresel

cCASdisplay = mCASdesired mCAScurrent

Conditions

tFPApresel NOT tFPApresel

cFPAdisplay = mFPAdesired mFPAcurrent
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